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Abstract 
Stroke continues to be a leading cause of adult disability, contributing to immense healthcare 
costs. Even after discharge from rehabilitation, post-stroke individuals continue to have 
persistent gait impairments, which in turn adversely affect functional mobility and quality of life. 
Multiple factors, including biomechanics, energy cost, psychosocial variables, as well as the 
physiological function of corticospinal neural pathways influence stroke gait function and 
training-induced gait improvements. As a step toward addressing this challenge, the objective of 
the current perspective paper is to outline knowledge gaps pertinent to the measurement and 
retraining of stroke gait dysfunction. The paper also has recommendations for future research 
directions to address important knowledge gaps, especially related to the measurement and 
rehabilitation-induced modulation of biomechanical and neural processes underlying stroke gait 
dysfunction. We posit that there is a need for leveraging emerging technologies to develop 
innovative, comprehensive, methods to measure gait patterns quantitatively, to provide clinicians 
with objective measure of gait quality that can supplement conventional clinical outcomes of 
walking function. Additionally, we posit that there is a need for more research on how the stroke 
lesion affects multiple parts of the nervous system, and to understand the neuroplasticity 
correlates of gait training and gait recovery. Multi-modal clinical research studies that can 
combine clinical, biomechanical, neural, and computational modeling data provide promise for 
gaining new information about stroke gait dysfunction as well as the multitude of factors 
affecting recovery and treatment response in people with post-stroke hemiparesis. 

Introduction 
Stroke is a leading cause of adult disability in the United States,1 with stroke prevalence, stroke-
related healthcare costs, and public health burden expected to increase in the next 20 years.2 Gait 
dysfunction persists at discharge from rehabilitation in over 2/3rd stroke survivors, adversely 
affecting community participation and quality of life.3–6 Due to the importance of walking in 
daily activities, restoration of gait function is a major goal of rehabilitation.4,7 However, stroke 
gait deficits are complex and multi-factorial. Stroke gait impairments adversely affect kinematics 
and kinetics in all paretic lower limb joints, disrupt stance and swing phases, and are marked by 
inter-limb asymmetry.3,8,9 making the diagnosis and identification of targets for treatment 
challenging. Several gait training interventions have been shown to improve walking function, 
and there is consensus that stroke survivors benefit from gait rehabilitation.10–15 However, 
agreement in literature is lacking on how to maximize treatment rehabilitation efficacy.16,17 Also, 
for a majority of gait interventions, irrespective of whether the intervention is proven to be 
statistically superior, there is high inter-individual variability in treatment effects.16,18,19 While a 
subset of stroke participants show large or meaningful improvements (responders), others do not 
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(non-responders). The challenge is that multiple factors, including biomechanics, energy cost, 
psychosocial factors, as well as the physiological function of corticospinal neural pathways 
influence stroke gait function and training-induced gait improvements. As a step toward 
addressing this challenge, the objective of the current perspective paper is to outline knowledge 
gaps and future research opportunities pertinent to the measurement and retraining of gait after 
stroke. 

Recommendations for future research related to measuring the 
effects of stroke on gait performance and walking function using 
behavioral data 
Clinical outcomes commonly used to assess sensorimotor impairment (e.g. Fugl-Meyer score) 
and gait function (e.g. gait speed)20 are an indispensable part of clinical rehabilitation, but they 
fail to capture gait quality and spatio-temporal movement patterns (how a person is moving). 
With respect to gait biomechanics outcomes, comprehensively mapping the effects of stroke is 
challenging because stroke gait impairments adversely affect kinematics (the description of 
motion) and kinetics (description of forces causing motion) in all paretic lower limb joints, 
disrupting all phases of gait.8,9 Our laboratory has published several studies that measured post-
stroke gait patterns via biomechanical evaluation (gait kinematics and kinetics). There is high 
variability in gait biomechanics metrics over the gait cycle between the paretic and nonparetic 
leg of stroke survivors, compared to an able-bodied individual. These effects of stroke on 
multiple gait variables across different stroke survivors are often poorly characterized using 
current approaches. Even with laboratory instrumentation, typically, in biomechanics and 
rehabilitation research, our lab21–29 and others30–39 use discrete metrics derived from complex gait 
data (e.g. peak ankle angle, peak anterior ground reaction force (AGRF)) to answer scientific 
questions about effects of interventions18,22,40–43 However, such univariate analysis of discrete 
variables fails to capture the multivariate nature of gait deficits. Discrete variables that represent 
one sub-phase or singular point in the gait cycle may fail to capture the time courses and 
continuous nature of gait throughout the walking cycle and across multiple cycles. Even the time 
histories of continuous kinematics and kinetics may fail to capture the inter-dependences 
between the variables and inter-limb coordination over time. There is a need for more research 
incorporating computational methods to capture multivariate effects of stroke on gait, while 
accounting for different phases of gait, to derive comprehensive, holistic metrics of gait quality. 
Furthermore, two stroke survivors with the same gait speed or Fugl-Meyer score can have very 
different impairments in their gait biomechanics or coordination patterns. Due to lack of access 
to expensive laboratory equipment and limited treatment time, clinicians commonly also 
subjectively observe and their patient’s walking patterns without using quantitative data, limiting 
the objectivity and reproducibility of clinical decision-making. With emerging technologies, 
wearable sensors and smart phone videos can enable gait to be measured quantitatively in 
clinical settings. However, these systems still generate a lot of data, subject to interpretation, 
including multiple joint angles, and over 20-50 spatiotemporal gait metrics.44,45 Thus, another 
avenue for future research is the development and clinical validation of gait analysis methods 
that can be applied to clinical settings, while being rapid, objective, intuitive, interpretable, and 
user-friendly to supplement clinical outcomes. 
Biomechanical metrics or computational analysis have strong potential for enhancing our 
understanding of the biomechanical mechanism underlying rehabilitation response, because they 
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can provide valuable insights about restitution versus compensation as well as underlying 
changes in motor control. Gait treatments may allow compensation, rather than true restitution, 
to improve gait speed and endurance. Outcomes of gait function (e.g. gait speed or endurance) 
lack the specificity to differentiate behavioral restitution from compensation, and fail to elucidate 
mechanisms. In a 2018 study, three categories of stroke survivors who walked at similar self-
selected speeds demonstrated high variability in pelvic excursion deviation and inter-limb 
asymmetry in gait biomechanics,9 supporting the sensitivity and advantage of biomechanical 
measures over speed-based outcomes. Use of gait speed and endurance to assess treatment-
related improvements, without regard to biomechanical patterns or neuropathological responses 
is a limitation in gait rehabilitation research. For example, training-induced improvements in 
speed may be accompanied by improved propulsive symmetry, greater reliance on the nonparetic 
leg (e.g. for forward propulsion), or energy-inefficient compensations from proximal joints (e.g. 
circumduction, increased pelvic excursion9). Similarly, improvements in paretic peak AGRF can 
be accompanied by worsening of other metrics, including inter-limb propulsion or step length 
asymmetry, or inefficient compensations in other gait variables at different points in the gait 
cycle. Previous studies have also suggested that gait rehabilitation efficacy may depend on 
individual differences in muscle coordination28,46,47 that generate spatiotemporal gait 
coordination patterns. Individual-specific biophysical modeling methods can also help predict 
and interpret mechanisms of treatment-induced changes in stroke gait,28,46 and merit more 
investigation in future research. Finally, multi-modal clinical research studies with inter-
disciplinary study teams can combine clinical, biomechanical, and modeling data to gain new 
information about stroke gait dysfunction as well as factors affecting recovery and treatment 
response. 

Recommendations for future research related to measuring the 
effects of stroke on neural circuits using non-invasive human 
neurophysiology data 
Stroke induces a cascade of changes in cortical and spinal circuits involved in locomotor 
control.48–50 The stroke-lesion induces structural and functional changes in cortical, brain stem, 
and spinal circuitry controlling locomotion.48 Effects of stroke on different neural circuits are 
complex, with potential disparities at different sites of the neuraxis, necessitating the use of 
multimodal approaches for in-depth assessment. There is a gap in our understanding of 
neurobiological processes underlying gait recovery and rehabilitation. The international Stroke 
Recovery and Rehabilitation Roundtable convened to “move rehabilitation research forward,” 
listed “identifying neurobiological mechanisms of treatment” and “sequential development, 
testing, and refining of interventions” as important research goals.51,52 
While increasing gait speed, understandably, is a major focus of gait rehabilitation, increases in 
gait speed may occur via diverse biomechanical and neural mechanisms. Although gait 
treatments may increase speed by making a compensatory strategy more effective, current 
neurorehabilitation philosophies based on neuroplasticity principles strive for restitution of 
deficits. In a 2017 review, Bowden et. al. concluded that “because rehabilitation literature is yet 
to support a causal, mechanistic link for functional gains post-stroke, a multimodal approach to 
stroke rehabilitation is necessary.”53 We posit that lack of inclusion of neuroplasticity outcomes 
is a major limitation in gait rehabilitation research.16,17,51,52,54–59 
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Neuroplasticity, the capacity of the nervous system to demonstrate structural and functional 
change in response to experience, is a fundamental yet under-investigated mechanism of stroke 
gait rehabilitation.48,49,60–64 Neuroplasticity research has helped develop consensus that to induce 
lasting improvements in gait function, training must incorporate repetitive, intense, and 
challenging practice,65 and informed innovative clinical algorithms to predict upper limb 
recovery post-stroke.61,66 Several non-invasive neuromodulation interventions have also been 
tested to enhance post-stroke recovery.67–69 However, current neuroplasticity principles are still 
derived largely from upper limb studies, leaving a gap regarding neural substrates of gait 
treatments. While randomized controlled trials may show that an intervention is efficacious, they 
often fail to inform us whether the intervention modified the stroke-related neurophysiological 
sequelae, and why or for whom the intervention is effective.70 Thus, there is a need for a shift 
toward mechanism-focused clinical trials.52,70 
The importance of corticospinal tract and motor cortex (M1) excitability in human locomotor 
control and stroke recovery is well studied. Transcranial magnetic stimulation-derived outcomes 
such as motor evoked potential amplitude and motor threshold can supplement clinical and 
biomechanical measures to evaluate overall corticospinal tract excitability or output in the 
lesioned hemisphere post-stroke. Paired pulse transcranial magnetic stimulation methods can 
probe intracortical circuitry, which also plays a role in gait, and can influence training-induced 
plasticity.55,71–73 Hoffman’s or H-reflexes and related non-invasive measures (e.g. reciprocal 
inhibition) can provide valuable measures of spinal circuit physiology, which in turn may be 
associated with spasticity and coactivation during gait.55,74 In addition to cortical and spinal 
circuits, the effects of stroke and training-induced neuroplasticity on brain stem, propriospinal, 
and other circuitry can provide important information to guide future clinical research and 
practice. Related, measures of brain structure derived using neuro-imaging can supplement 
neurophysiology, as well as behavioral gait outcomes. 
As an example to illustrate research on gait rehabilitation-induced neuroplasticity, high-intensity 
treadmill training is an evidence-supported treatment that provides practice of thousands of steps 
and aerobic exercise within a safe, predictable environment. However, depending on the type and 
content of adjunctive feedback or cues (verbal, biofeedback, stimulation), the effects of the 
treatment on paretic leg biomechanical deficits may vary. Importantly, neural correlates 
underlying high-intensity training need more study. A single session of high-intensity interval 
treadmill walking exacerbated already suppressed ankle muscle corticospinal excitability in the 
paretic leg post-stroke.75 Four weeks of treadmill training in chronic stroke improved gait speed 
compared to control treatment, but increased cortical excitability in the non-lesioned 
hemisphere.76 Similarly, the ‘FastFES’ intervention combines fast treadmill training with 
functional electrical stimulation (FES) to ankle dorsi- and plantar-flexor muscles timed with the 
appropriate phase of gait. FastFES is designed to improve paretic leg AGRF by synergistically 
facilitating more posterior positioning of paretic trailing limb relative to the body’s center of 
mass and use FES to augment activation of the paretic plantarflexors during late stance—key 
parameters underlying forward propulsion (L. N. Awad et al., 2016a; Hsiao, Knarr, Higginson, & 
Binder-Macleod, 2015a).18,77 FastFES forms a valuable gait treatment paradigm because it uses a 
hypothesis-based biomechanical approach to improve gait function by targeting specific 
impairments in the paretic leg; has been shown to improve gait speed, endurance, and energy 
efficiency; and should facilitate motor learning and neuroplasticity.18,22,30 However, similar to 
most gait interventions, with high-intensity fast treadmill training and FastFES, not all 
participants improve gait function, with training-induced change in gait speed showing high 
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inter-individual variability.18,37 We posit that inclusion of neurophysiology measures in clinical 
trials is important to understand how and why an intervention improves gait function, especially 
with regards to neural mechanisms. Another related limitation in current gait rehabilitation is that 
intervention-prescription is not determined based on baseline impairments or neurobiological 
characteristics. 

Summary 
Stroke continues to be a leading cause of adult disability, contributing to immense healthcare 
costs. Even after discharge from rehabilitation, post-stroke individuals continue to have 
persistent gait impairments, which in turn adversely affect functional mobility and quality of life. 
This perspective paper provides an overview of current research, and recommendations for 
future research directions to address important knowledge gaps. We posit that there is a need for 
leveraging emerging technologies to develop innovative, comprehensive, methods to measure 
gait patterns quantitatively, to provide clinicians with objective measure of gait quality that can 
supplement conventional clinical outcomes of walking function. Additionally, we posit that there 
is a need for more research on how the stroke lesion affects multiple part of the nervous system, 
and to understand the neuroplasticity correlates of gait training and gait recovery. 
Dr. Kesar may be contacted at tkesar@emory.edu. 
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