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Abstract 
COVID-19, a novel disease that spreads across the globe, has posed multiple challenges to the 
healthcare systems around the world. Due to the lack of understanding of the spread and 
management of this disease, one major challenge is for healthcare systems to anticipate the 
volumes and needs of patients infected with the disease. In order to provide insights into optimal 
allocation of resources from preparing ChristianaCare for the pandemic to the recovery of the 
healthcare system, industrial engineering and predictive modeling approaches are used. This 
paper discusses five interrelated studies that utilize various techniques to inform multiple aspects 
of the healthcare system in order to be better prepared for the pandemic. 

Introduction 
As COVID-19 is a novel disease, the lack of understanding of its pathogenesis resulted in limited 
insight into its management.1 The rampant spread of COVID-19 resulted in drastic increases of 
patients seeking medical care, both in the intensive care units as well as in the general medical 
units. Based on the transmission rates of COVID-19 observed in other countries such as China 
and Italy, it is believed that the US healthcare system will not be sufficiently equipped to provide 
care for all patients,2,3 due to the potential shortages of critical hospital resources such as hospital 
beds and ventilators. 
In order to provide insight into resource requirements for healthcare systems, several research 
groups and commercial companies have developed models to predict the COVID-19 patient 
admissions, inpatient census, and ventilator needs.4–6 
The models developed rely on an epidemiologic compartmental model known as the SIR model, 
with compartments representing those individuals who transition through stages of being 
susceptible (S), infective (I), and recovered (R). While these models provide a foundation for 
understanding disease spread in general, due to the specificity of this disease to specific 
communities, there is a need to customize predictions based on characteristics local to the 
hospital catchment area. As a result, building upon the model by Becker and Chivers,4 we 
developed a model to predict COVID-19 daily patient admit volumes and daily census based on 
ChristianaCare catchment area characteristics and to allow for flexibility in specifying model 
parameters based on local assumptions and needs. 
As the healthcare system is a complex system with many components having dynamic, non-
linear relationships with one another,7 it is crucial to examine each component of the healthcare 
system separately and understand the impact of the pandemic on each subsystem. In order to 
provide such insights, the Value Institute at ChristianaCare engaged in various investigations 
utilizing industrial engineering and quantitative modeling approaches. Figure 1 illustrates the 
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inter-connectedness among five investigations conducted toward understanding impact of the 
pandemic to ChristianaCare. 
Figure 1: Inter-connectedness of COVID-related investigations toward a complete understanding 
of pandemic impact to ChristianaCare 

 

Epidemiologic SIR model for predicting COVID-19 inpatient volumes 
As the pandemic began to spread, epidemiologists across the globe began developing models to 
simulate the spread of the coronavirus in order to not only predict mortality and morbidity, but 
also the number of hospitalized cases, ICU bed and ventilator needs. Epidemiologists and data 
scientists worked together to make the coding freely available to scientists around the world. 
These models utilize a traditional epidemiologic SIR framework that attempts to understand 
spread through how an individual transitions through three states: a susceptible (S) state to the 
virus, a infectious state (I), and then finally recovery (R) or death. Such SIR framework has been 
used to understand other the spread of other diseases such as dengue fever and SARS.8 
Given the novel COVID-19 disease, many assumptions needed to be made to compute the 
probabilities that feed these models. First, every individual starts out as being susceptible since 
there is no evidence of any natural immunity to this virus. Then assumptions are made regarding 
rate of infection in the population, which changes as mitigation efforts such as school closures, 
quarantine, and isolation are introduced. And finally, it assumes that once an individual recovers, 
the individual is no longer susceptible to contracting the virus again. Given these assumptions 
and the fact that many of them depend upon the characteristics of the local population, a 
collaboration between the scientists at the Biden School at the University of Delaware and the 
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Value Institute was started to develop a Delaware-specific predictive model utilizing Python 
coding language that allows for the customization of the prediction. This customization predicts 
COVID-19 admissions and hospital census based on the demographics of individuals who reside 
within the catchment area of ChristianaCare, within the framework of the epidemiologic SIR 
model. 
This model was developed to predict the daily admit volumes and census of COVID-19 patients 
in the ICU and non-ICU units, as well as the number of ventilators needed. Eight-day predictions 
from this model are shared with hospital administrators daily to inform decisions such as beds 
and ventilator resources allocation, as well as staffing decisions. As an example, Table 1 
demonstrates the predictions produced from the model for the week of June 15, 2020. 
Table 1. Predictions of new admissions and hospitalized census for ChristianaCare for the week 
of June 15, 2020 
 Bed Needs ICU Beds Ventilators 
6/15    
New Admits 10 (10, 11) 3 (3, 3) 1 (1, 1) 
Total COVID patients 54 (53, 57) 23 (22, 24) 10 (10, 10) 
CHRISTIANA    
New Admits 7 2 1 
Total COVID patients 36 15 7 
WILMINGTON    
New Admits 3 1 0 
Total COVID patients 18 8 3 
6/16    
New Admits 11 (10, 12) 3 (3, 4) 1 (1, 1) 
Total COVID patients 57 (55, 61) 24 (23, 25) 10 (10, 11) 
CHRISTIANA    
New Admits 7 2 1 
Total COVID patients 38 16 7 
WILMINGTON    
New Admits 4 1 0 
Total COVID patients 19 8 3 
6/17    
New Admits 11 (10, 13) 3 (3, 4) 1 (1, 2) 
Total COVID patients 60 (56, 65) 25 (24, 27) 11 (11, 12) 
CHRISTIANA    
New Admits 7 2 1 
Total COVID patients 40 17 7 
WILMINGTON    
New Admits 4 1 0 
Total COVID patients 20 8 4 
6/18    
New Admits 12 (11, 13) 4 (3, 4) 1 (1, 2) 
Total COVID patients 63 (58, 69) 26 (25, 28) 12 (11, 12) 
CHRISTIANA    



DOI: 10.32481/djph.2020.08.012 

 

New Admits 8 3 1 
Total COVID patients 42 17 8 
WILMINGTON    
New Admits 4 1 0 
Total COVID patients 21 9 4 
6/19    
New Admits 12 (11, 14) 4 (3, 4) 1 (1, 2) 
Total COVID patients 66 (60, 74) 28 (26, 30) 12 (11, 13) 
CHRISTIANA    
New Admits 8 3 1 
Total COVID patients 44 19 8 
WILMINGTON    
New Admits 4 1 0 
Total COVID patients 22 9 4 
6/20    
New Admits 13 (11, 15) 4 (3, 5) 2 (1, 2) 
Total COVID patients 69 (62,78) 29 (27, 32) 13 (12, 14) 
CHRISTIANA    
New Admits 9 3 1 
Total COVID patients 46 19 9 
WILMINGTON    
New Admits 4 1 0 
Total COVID patients 23 10 4 
6/21    
New Admits 14 (12, 16) 4 (3, 5) 2 (1, 2) 
Total COVID patients 73 (64, 83) 31 (28, 34) 13 (12, 15) 
CHRISTIANA    
New Admits 9 3 1 
Total COVID patients 49 21 9 
WILMINGTON    
New Admits 5 1 1 
Total COVID patients 24 10 4 

Discrete-event simulation for predicting overall inpatient volumes 
A discrete-event simulation (DES) model using Arena Simulation was developed to predict 
inpatient ICU and non-ICU census as well as overall ventilator needs by COVID-19 and non-
COVID-19 patients across the health system. 
Due to the flexibility of DES, as well as the improved computing speed and memory in modern 
computers, DES has been increasingly used in healthcare services for problems of increasing size 
and complexity.9 Used in many healthcare settings including healthcare systems operations, 
disease progression modeling, screening modeling, and health behavior modeling,10 discrete-
event simulation is a class of computer simulation model that utilizes time distributions and 
process flow derived from the actual system to mimic its behavior. 
In this model, patients are broadly categorized into: 
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• COVID-19 patients requiring ICU care, 
• COVID-19 patients requiring ICU care and ventilators, 
• COVID-19 patients requiring non-ICU care; 
• non-COVID-19 patients requiring ICU care, 
• non-COVID-19 patients requiring ICU care and ventilators, 
• non-COVID-19 patients requiring non-ICU care, 
• non-COVID-19 patients requiring non-ICU care and ventilators. 

Each category of patient has its own stochastic properties such as length-of-stay and percent 
distribution of patients needing ICU level-of-care and/or ventilators. The stochastics associated 
with rate of arrivals of each patient category was obtained through retrospective data. 
The predictions obtained through DES provided hospital administrators an eight-day window for 
short-term decision-making on resources allocation (Table 2). This model continues to be 
updated and refined as we observe new trends from the previous study and non-COVID patient 
volumes through statistical analysis. 
Table 2. Projected Total Patient Census (COVID and non-COVID) for the week of June 15, 
2020 
 Total Beds ICU Beds Total Ventilators 
6/15    
CHRISTIANA 629 (551, 706) 66 (51, 84) 45 (35, 54) 
WILMINGTON 159 (136, 194) 10 (6, 16) 7 (2, 14) 
6/16    
CHRISTIANA 626 (536, 702) 67 (48, 84) 44 (33, 54) 
WILMINGTON 153 (124, 184) 10 (6, 15) 7 (2, 14) 
6/17    
CHRISTIANA 626 (557, 704) 65 (45, 81) 44 (36, 55) 
WILMINGTON 151 (121, 185) 10 (6, 17) 7 (1, 14) 
6/18    
CHRISTIANA 634 (582, 730) 68 (52, 90) 45 (33, 59) 
WILMINGTON 157 (131, 187) 11 (6, 18) 7 (2, 13) 
6/19    
CHRISTIANA 638 (594, 746) 71 (58, 89) 47 (33, 59) 
WILMINGTON 151 (136, 193) 11 (6, 18) 8 (2, 13) 
6/20    
CHRISTIANA 630 (594, 720) 71 (57, 91) 49 (34, 67) 
WILMINGTON 150 (130, 191) 12 (7, 17) 8 (2, 17) 
6/21    
CHRISTIANA 629 (575, 689) 72 (54, 93) 48 (33, 64) 
WILMINGTON 146 (129, 176) 12 (8, 17) 8 (2, 12) 
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Markov model for predicting financial impact to hospital 
Due to the unknown impact on hospital finances by the COVID-19 patient population, we 
developed a Markov model to capture the changes in patients’ health states and levels of care 
during their hospital stay, as well as the associated charges with each transition. This model is 
constructed based on a preliminary dataset consisting of all COVID-19 patients hospitalized at 
ChristianaCare hospitals. 
Consisting of a defined state space with discrete states, a Markov model is a stochastic 
representation of the probable transitions of a system from one state to another. The transition 
between two consecutive states is governed by transition probabilities obtained through analysis 
of retrospective data.11 As a highly versatile model, the Makov model (and its variance) has been 
used in a wide range of applications, including cost-effectiveness of a healthcare case 
management program,12 disease burden,13 and evaluation of economic value of cancer 
treatment.14 
Utilizing the Markov model, incorporating predicted COVID-19 patient volumes from the first 
study above, we predicted the charges for the COVID-19 inpatients assuming future discharged 
COVID-19 patients would follow similar transitions and probabilities represented in the Markov 
model developed. The predicted volumes and charges are shared with the Finance department at 
ChristianaCare to inform financial decision-making. 

ARIMA model for predicting ambulatory visit volumes 
As many health systems in the country utilize various tools to predict COVID-19 inpatient 
volumes, there is limited research on tools to predict outpatient volumes. At ChristianaCare, 
COVID-19 outpatient visits include previously hospitalized patients who recovered from 
COVID-19, and COVID-19 patients needing healthcare but with conditions not meeting criteria 
to be hospitalized. Some of these patients can be seen virtually while some need to be seen in-
person. In this study, we developed an ARIMA model to predict COVID-19 volumes based on 
three locations that had the highest retrospective visit volumes. These three ambulatory locations 
also belong to ChristianaCare. 
ARIMA (Auto Regressive Integrated Moving Average) model is a class of time-series model 
that utilizes a pattern of growth, rate of change of growth, as well as noise between consecutive 
time points based on retrospective data, in order to make predictions.15 It has been used in 
various industries including healthcare. Some healthcare applications include forecasting 
volumes of cases of epidemic disease,16,17 and hospital daily outpatient visits.18 
As all three locations of interest provide healthcare to non-COVID-19 patients as well, we 
developed an ARIMA model to predict non-COVID-19 volumes at the same locations as they 
will continue to provide care to all patients during the pandemic and beyond. Results from these 
models are provided weekly to clinical and operational leads for decision-making on resources 
allocation at the locations of interest. 

Human factors principles for health system recovery 
The COVID-19 pandemic has caused outpatient practices to conduct a majority of outpatient 
consultation appointments through telemedicine instead of on-site visits. In order to resume on-
site visits for select patient populations, there is a need for re-designing workflow and physical 
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spaces to allow for social distancing in order to prevent the spread of COVID-19,19 while 
optimizing providers’ efficiency. In order to accomplish these goals, human factors engineering 
principles are needed to re-design the clinical systems. 
Human factors engineering is a discipline concerned with how humans interact with elements 
within their environment or system in order to optimize safety and performance. Healthcare is a 
complex sociotechnical system with complex interactions between humans, humans and 
technology, humans and artifacts, and humans and tools. Human factors engineering principles 
have been increasingly used in healthcare in the recent years20 from infection prevention21 to 
work system analysis.22 
In this on-going study, human factors engineering principles will be applied to areas in the 
outpatient care center such as check-in areas, waiting rooms, exam rooms, and collaborative 
clinical workspaces. Principles such as mistake proofing that aim to “make the right thing to do 
the easy thing to do” and “make the wrong things to do the hard things to do” will be employed 
to ensure an efficient and safe place for both the caregivers and patients. Heuristic evaluations 
and usability tests with end-users, where relevant, will be used in case of any new technology 
needed for the design of clinic recovery. 

Conclusion 
The use of engineering and predictive modeling techniques in healthcare has been increasingly 
popular in recent years. As the COVID-19 pandemic is unprecedented, various challenges to the 
healthcare system ensue, from planning for capacity and finance prior to the onset of the 
pandemic at the hospital, to re-designing physical spaces for resuming operations as close to 
normalcy as possible. 
In order to overcome such challenges, we leveraged industrial engineering and predictive 
modeling techniques to provide insight for the healthcare system to make data-driven and 
evidence-based decisions, including resources allocation in the inpatient and outpatient settings, 
as well as financial decisions. 

Limitations 
Due to the lack of data and knowledge on the pathogenesis of COVID-19, as well as the 
challenge of predicting human behavior that will impact the spread of the disease, such 
techniques and models are developed and used based on current knowledge available in the 
literature as well as direct observations in the health system. 
As more knowledge is gained regarding the disease, including seasonality effects, the models 
described in this paper will be further refined to continue provide insight for on-going decision 
support for the health system. 
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